Microwave-Assisted Synthesis and Anti-HIV Activity of New Benzenesulfonamides Bearing 2,5-Disubstituted-1,3,4-oxadiazole Moiety

Muhammad Zareef,¹ Rashid Iqbal,¹ Najim A. Al-Masoudi,² Javid H. Zaidi,¹ and Muhammad Arfan¹

¹Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan

²*Fachbereich Chemie, Universit at Konstanz, Postfach 5560, D-78464 Konstanz, Germany (Formerly)*

Received 21 July 2006; revised 6 August 2006

ABSTRACT: New benzenesulfonamides, most of which are chiral, incorporating 1,3,4-oxadiazole, and selected amino acid entities have been synthesized, using the microwave irradiation method. Most of the synthesized compounds were tested against HIV activity. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:425–431, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20316

INTRODUCTION

The increasing environmental consciousness throughout the world has put a pressing need to develop an alternate synthetic approach for biologically and synthetically important compounds. However, the short reaction time offered by microwave-assisted organic synthesis fulfills the increased demands in industry [1–3] as well as is suited to meet the above-mentioned challenges.

On the other hand, various pharmacological importances of 2,5-disubstituted-1,3,4-oxadiazoles and sulfonamides [4–8] have been extensively doc-

^{© 2007} Wiley Periodicals, Inc.

umented for their wide variety of pharmacological activities such as antimicrobial, insulin-releasing antidiabetic, carbonic anhydrase inhibitory, anti-HIV, high-ceiling diuretic, antithyroid, and antitumor [9-11]. Furthermore, the benzenesulfonamides having free SH/mercaptoaryl group showed remarkable potency by optimizing the antiviral and anticarbonic anhydrase enhancement activity, because the thiol compounds can bind the zinc in the active site of enzymes [12,13]. Regarding the anti-HIV activity, update, numerous classes of nonnucleoside reverse transcriptase inhibitors (NNRTIs), carrying heterocycle backbones, have been approved for the treatment of HIV infection, such as nevirapine [14], delaviridine [15], and efavirenz (EFV) [16]. However, the mutation associated with the therapeutic treatment led many laboratories to develop continuously new type of NNRTIs compound. De Clercq has reviewed [17] recently the new development in anti-HIV chemotherapy.

In respect with such mutation in the life cycle of HIV-1 and the carried attempts to inhibit the reverse transcriptase (RT), the enzyme responsible for HIV, we have synthesized new derivatives of benzenesulfonamides bearing 2,5-disubstituted-1,3,4-oxadiazole moiety, using the microwave irradiation method, and evaluated in vitro their HIV-1 and HIV-2 activity by using III_B and ROD strains.

Correspondence to: Muhammad Zareef, Najim A. Al-Masoudi; e-mail: info@al-masoudi.de (NAM) and mkzareef@yahoo.com (MZ).

SCHEME 1

RESULTS AND DISCUSSION

Chemistry

A number of methods have been reported in the literature for the synthesis of benzenesulfonamides, e.g., using carboxylic acids/hydrazides [18] and sulfonic acids/sulfonylchlorides [19] as starting compounds. Therefore, in continuation of our research [20] on benzenesulfonamides, we report here the microwave irradiation method for the synthesis of some new chiral and achiral benzenesulfonamides. New optically active benzenesulfonamides bearing 2-substituted-5-mercapto-1,3,4-oxadiazole moiety **3a–l** (**3m** and **3n** are achiral) have been synthesized under microwave irradiation, using DMSO as a solvent (Scheme 1).

Microwave irradiation gave significant reduction in reaction time with comparative good yields. By using the microwave irradiation of the potassium salt of dithiocarbazinate derivatives **2a–n** in DMSO, the required reaction time was 2.5–3.0 min to give **3a–n** in 77–89% yield. In comparison, the conversion of **1a–n** to **3a–n** by the conventional method in EtOH under reflux, it required 16–17 h. Therefore, it is worthwhile to note that the reaction time has been reduced from ~17 h to ~3.0 min (Table 1) under microwave irradiation and gives an advantage for the synthesis of various sulfonamides derivatives by this method for more pharmacological applications.

The potassium salts of 3-[2-(4-methyl/chloro or methoxyphenylsulfonamido)]alkyl dithiocarbazinates**2**were prepared by reaction of the hydrazides**1**with CS₂ in alcoholic KOH [21].

The structures of all the synthesized compounds were confirmed by elemental analysis, IR, ¹H NMR, mass spectra, and optical rotation. The synthesis of compounds **3a–l** by the conventional method has been reported earlier by our group [20,22].

	Time		Yield (%)		mp (° C)	
	MWI (min)	Thermal (h)	MWI	Thermal	MWI	Thermal
3a	2.5	16	93	87	192	191
3b	3.0	17	91	89	195	196
3c	3.0	17	85	89	181	184
3d	3.0	17	88	91	192	193
3e	2.5	16	89	81	205	207
3f	3.0	16	79	78	161	160
3g	3.0	17	86	87	158	159
3ň	3.0	16	87	93	162	163
3i	3.0	16	85	80	171	172
3j	3.0	17	91	73	185	186
3k	2.5	16	91	89	147	149
31	3.0	17	87	81	153	155
3m	3.0	17	81	65	191	193
3n	3.0	17	87	69	211	213

 TABLE 1
 Reaction Time, Yield and Melting Point of New Benzenesulfonamides

TABLE 2InVitroAnti-HIV-1^aandHIV-2^bofSomeBenzenesulfonamides

	Virus Strain	IC ₅₀ (μg/mL) ^c	СС ₅₀ (µg/mL) ^d	SI ^e
3a	III _B	>66.3	66.3	<u>≤</u> 1
	ROD	>56.3	56.3	<u>≤</u> 1
3d	III _B	>125	>125	<u><</u> 1
	ROD	>125	>125	<u>≤</u> 1
3f	III _B	>125	>110	<1
	ROD	>125	125	<u>≤</u> 1
3g	III _B	19.5	55.8	3
•	ROD	>14.2	75.3	18
3h	III _B	>125	>125	<1
	ROD	>125	>125	<u></u> 1
3i	III _B	>125	>125	<u><</u> 1
	ROD	>125	>125	<1
3k	III _B	>125	>125	<u></u> 1
	ROD	>125	>125	<1
3m	III _B	>25.4	25.4	<1
	ROD	>33.2	33.2	<1
4a	III _B	>125	>125	<u></u> 1
	ROD	>125	>125	<1
4d	III _B	>14	14	<1
	ROD	>14.5	14.5	
Efavirenz	IIIB	0.003	40	13.333
Capravirine	III _B	0.0014	11	7,857

^aAnti-HIV-1 activity measured with strain III_B

^bAnti-HIV-2 activity measured with strain ROD.

^cCompound concentration required to reduce the viability of mockinfected MT-4 cells by 50%.

^dCompound concentration required to achieve 50% protection of MT-4 cells from the HIV-1 and 2 induced cytopathogenicity.

^eSI: Selectivity index (IC₅₀/CC₅₀).

membrane fusion, thereby blocking HIV-1 entry into target cells [25].

Our target was the disruption of the gp41 sixhelix bundle formation by the newly synthesized amino acids, leading to inhibition of HIV. Compound **3g** was found to be the only compound from the series inhibiting HIV-1 and HIV-2 replication in cell culture, which showed an IC₅₀ of 19.5 μ g/mL and a CC₅₀ of 55.8 μ g/mL against HIV-1, resulting in a selectivity index of 3, meanwhile it showed an IC₅₀ of 14.2 μ g/mL and a CC₅₀ of 75.3 μ g/mL against HIV-1, resulting in a selectivity index of 18. This result encouraged us to modify such molecules with another potential group might fulfill the need of our target.

EXPERIMENTAL

Melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. Optical rotation data were recorded on a Perkin-Elmer 241 polarimeter. IR spectra were recorded in KBr disk on an FT-IR model FTS 3000 MX spectrometer. Elemental analysis was performed on a Carlo

CONCLUSION

Microwave irradiation procedure showed an advantage in comparison to the alternative conventional method and those previously reported by our group [20,22], in terms of simplicity and shorter reaction times. In addition, the availability of starting material, high yields of the final products (sulfonamides), free mercapto group at position 5 of the oxadiazole ring, and incorporation of chiral center of these compounds for the possible stereoselectivity in various applications (e.g., anti-HIV agents), all these requirements gave more advantages for our present work.

In Vitro Anti-HIV ASSAY

Compounds **3a**, **3d**, **3f**, **3g–i**, **3k**, **3m**, **4a**, and **4d** were tested for their anti-HIV-1 (strain III_B) and HIV-2 (strain ROD) activity in human T-lymphocyte (MT-4) cells, and the results are reported in Table 2, in which the data for efavirenz [16] and capravirine [23] were included for comparison purposes.

The gp41 subunit of the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein plays an important role in HIV-1 entry and serves as an attractive target for the development of HIV-1 entry inhibitors, a new class of anti-HIV drugs [24]. Triggered by gp120 binding to CD4 and a coreceptor, gp41 undergoes a conformation shift from a native prefusogenic state to a fusogenic state, in which the N-terminal heptad repeat (NHR) and Cterminal heptad repeat (CHR) associate to form a six-helix bundle, representing the fusion-active gp41 core. Any compound that disrupts the gp41 sixhelix bundle formation may inhibit the gp41-mediated Erba 1106 elemental analyzer. ¹H NMR (400 and 500 MHz) spectra were recorded on a Bruker NMR spectrophotometer, with TMS as internal standard and on the δ scale in ppm. EI–MS spectra were recorded on MAT 312 and MAT 311A mass spectrometers.

Potassium 3-[2-[4-Methyl/chloro/methoxyphenylsulfonamido)alkynoyldithiocarbazinates (2)

These compounds were prepared by using the reported procedure [21] from hydrazides **1**.

General Procedure for Preparation of 4-Methyl/ chloro-N-(1-(5-mercapto-1,3,4-oxadiazol-2-yl)phenyl)benzenesulfonamide (**3a–n**)

A suspension of the salt 2 (1.50 mmol) in DMSO (2 mL) was irradiated in microwave for 2.5–3.0 min. The reaction mixture was diluted with water and acidified with 4 N HCl. The solid obtained was filtered, washed with water, dried, and recrystallized from aq. EtOH. The melting points and comparative yields of the compounds obtained are given in Table 1. Compounds **3a–n** were prepared previously by the conventional method [22].

4-Methyl-N-(1-(5-mercapto-1,3,4-oxadiazol-2-yl)-2-methylpropyl)benzenesulfonamide (**3a**). Yield: 0.46 g (93%), mp 191–192°C, $[\alpha]_D^{20} = +39°$ (C = 1.09, acetone). IR (KBr) ν_{max} (cm⁻¹): 3285 (NH), 1591 (C=N), 1351, 1161 (SO₂), 1283 (C=S). ¹H NMR (acetone- d_6): δ 0.89 (d, 3H, J = 6.7 Hz, CH₃); 1.02 (d, 3H, J = 6.7 Hz, CH₃); 2.14–2.11 (m, 1H, CH); 2.37 (s, 3H, CH₃); 4.20 (dd, 1H, J = 8.5 Hz, J = 9.0 Hz, CH); 7.24 (d, 1H, J = 9.0 Hz, NH); 7.31 (d, 2H, J = 8.2 Hz, ArH); 7.63 (d, 2H, J = 8.2 Hz, ArH); 12.85 (br s, 2H, NH, SH). Anal. Calcd for C₁₃H₁₇O₃N₃S₂ (327.41): C, 47.69; H, 5.23; N, 12.83. Found: C, 47.39; H, 4.98; N, 13.02. MS: m/z (EI) 327 (M⁺).

4-Chloro-N-(1-(5-mercapto-1,3,4-oxadiazol-2-yl)-2-methylpropyl)benzenesulfonamide (**3b**). Yield: 0.47 g (91%), mp 195–196°C, $[\alpha]_D^{20} = +29^\circ$ (C = 0.70, acetone). IR (KBr) ν_{max} (cm⁻¹): 3287 (NH), 2550 (SH), 1598 (C=N), 1371, 1166 (SO₂). ¹H NMR (acetone- d_6): δ 0.92 (d, 3H, J = 7.4 Hz, CH₃); 1.08 (d, 3H, J = 7.4 Hz, CH₃); 2.25–2.27 (m, 1H, CH); 4.29 (dd, 1H, J = 8.4 Hz, J = 9.0 Hz, CH); 7.68 (d, 2H, J = 8.0 Hz, ArH); 7.91 (d, 2H, J = 8.0 Hz, ArH); 13.35 (br s, 1H, NH) MS: m/z (EI) 347 (M⁺); C₁₂H₁₄O₃N₃S₂Cl (347.8463), HRMS: (347.8412).

4-Methyl-N-(1-(5-mercapto-1,3,4-oxadiazol-2yl)propyl)benzenesulfonamide (**3c**). Yield: 0.41 g (87%), mp 181–182°C, $[α]_{20}^{0}$ = +36° (*C* = 1.01, acetone). IR (KBr) ν_{max} (cm⁻¹): 3286 (NH), 1587 (C=N), 1356, 1145 (SO₂), 1285(C=S). ¹H NMR (acetone-*d*₆): δ 0.94 (t, 3H, *J* = 7.4 Hz, CH₃); 1.82–1.89 (m, 2H, CH₂); 2.37 (s, 3H, CH₃); 4.38 (dd, 1H, *J* = 7.8 Hz, *J* = 7.7 Hz, CH); 7.33 (d, 2H, *J* = 8.0 Hz, ArH); 7.69 (d, 2H, *J* = 8.0 Hz, ArH); 12.79 (br s, 1H, NH). Anal. Calcd for C₁₂H₁₅O₃N₃O₃S₂ (313.39): C, 45.99; H, 4.82; N, 13.41. Found: C, 45.87; H, 4.66; N, 13.33. MS: *m*/*z* (EI) 313 (M⁺).

4-Chloro-N-(1-(5-mercapto-1,3,4-oxadiazol-2-yl)propyl)benzenesulfonamide (**3d**). Yield: 0.44 (88%), mp 192–193°C, $[\alpha]_D^{20} = +39^\circ$ (*C* = 1.08, acetone). IR (KBr) ν_{max} (cm⁻¹): 3283 (NH), 2545 (SH), 1589 (C=N), 1365, 1149 (SO₂). ¹H NMR (acetone- d_6): δ 0.95 (t, 3H, *J* = 7.4 Hz, CH₃); 1.86–1.92 (m, 2H, CH₂); 4.42 (dd, 1H, *J* = 7.6 Hz, *J* = 7.5 Hz, CH); 7.62 (d, 2H, *J* = 8.0 Hz, ArH); 7.88 (d, 2H, *J* = 8.0 Hz, ArH); 12.96 (br s, 1H, NH). Anal. Calcd for C₁₁H₁₂O₃ClN₃S₂ (333.79): C, 39.58; H, 3.62; N, 12.59. Found: C, 39.49; H, 3.69; N, 12.44. MS: *m*/*z* (EI) 332/334 (M⁺).

4-Methyl-N-(1-(5-mercapto-1,3,4-oxadiazol-2-yl)ethyl)benzenesulfonamide (**3e**). Yield: 0.37 g (83%), mp 205–207°C, $[\alpha]_D^{20} = +29^\circ$ (c = 0.89, acetone). IR (KBr) ν_{max} (cm⁻¹): 3282 (NH), 2551 (SH), 1589 (C=N), 1375, 1126 (SO₂). ¹H NMR (acetone- d_6): δ 1.46 (d, 3H, J = 6.5 Hz, CH₃); 2.40 (s, 3H, CH₃); 4.57–4.65 (m, 1H, CH); 7.34 (d, 2H, J = 8.2 Hz, ArH); 7.68 (d, 2H, J = 8.2 Hz, ArH); 12.85 (br s, 1H, NH). Anal. Calcd for C₁₁H₁₃O₃N₃S₂ (299.36): C, 44.13; H, 4.38; N, 14.04; Found: C, 44.07; H, 4.43; N, 14.31. MS: m/z (EI) 299 (M⁺).

4-Chloro-N-(1-(5-mercapto-1,3,4-oxadiazol-2-yl)ethyl)benzenesulfonamide (**3f**). Yield: 0.44 g (91%), mp 172–174°C, $[\alpha]_D^{20} = +43^\circ$ (C = 1.04 acetone). IR (KBr) ν_{max} (cm⁻¹): 3285 (NH), 2550 (SH), 1611 (C=N), 1356 (SO₂ asym), 1149 (SO₂ sym). ¹H NMR (acetone- d_6): δ 1.51 (d, 3H, J = 7.0 Hz, CH₃); 4.73–4.65 (m, 1H, CH); 7.58 (d, 2H, J = 8 Hz, ArH); 7.83 (d, 2H, J = 8 Hz, ArH); 12.86 (br s, 1H, NH). Anal. Calcd for C₁₀H₁₀O₃ClN₃S₂ (319.78): C, 37.56; H, 3,15; N, 13.14. Found: C, 37.74; H, 2.88; N, 13.10. MS: m/z (EI) 318/320 (M⁺).

4-Methoxy-N-[1-(5-mercapto-1,3,4-oxadiazol-2yl)-4-(methylthio)propyl]benzenesulfonamide (**3g**). Yield: 0.37 g (65%), mp 158–160°C, $[\alpha]_D^{20} = +31^\circ$ (*C* = 0.62, acetone). λ_{max} (MeOH): 277, 234 nm, IR (KBr) ν_{max} (cm⁻¹): 3271 (NH), 1585 (C=N), 1357, 1166 (SO₂). ¹H NMR (400 MHz, acetone-*d*₆): δ 2.02 (s, 3H, SCH₃); 2.07–2.14 (m, 2H, *CH*₂CH₂SMe); 2.50–2.58 (m, 2H, CH₂*CH*₂SMe); 3.88 (s, 3H, OCH3); 4.37 (dd, 1H, J = 7.5 Hz, J = 9.0 Hz, NCH); 7.21 (br s, 1H, NH); 7.01 (d, 2H,J = 8.1 Hz, ArH); 7.69 (d, 2H, J = 8.2 Hz, ArH); 12.89 (br s, 1H, NH).¹³C NMR (63.2 MHz, CDCl₃): δ 178.2 (C=S); 162.1 (C=N), 144.8, 136.1, 130.4, 127.8 (Ar), 56.2 (OMe); 52.2 (CHN); 38.6 (*CH*₂CH₂SMe); 31.1 (CH₂*CH*₂SMe); 20.2 (SMe). Anal. Calcd for C₁₃H₁₇N₃O₄S₃ (375.49): C, 41.58; H, 4.56; N, 11.19. Found: C, 41.27; H, 4.49; N, 10.95. MS; m/z (EI) 376 (M + H)⁺.

4-Methyl-N-[1-(5-mercapto-1,3,4-oxadiazol-

2yl]-4-(methylthio)propyl]benzenesulfonamide (**3h**). Yield: 0.47 g (87%), mp 160–162°C, $[\alpha]_{D}^{20} = -32^{\circ}$ (C = 1.0, acetone). IR (KBr) ν_{max} (cm⁻¹): 3286 (NH), 1599 (C=N), 1351, 1161 (SO₂), 1285 (C=S). ¹H NMR (400 MHz, acetone- d_6): δ 2.02 (s, 3H, SCH₃); 2.05–2.16 (m, 2H, CH₂CH₂SMe); 2.51–2.57 (m, 2H, CH_2CH_2SMe); 4.65 (dd, 1H, J = 7.5 Hz, J = 9.0 Hz, NCH); 2.37 (s, 3H, CH₃-Ar); 7.22 (br s, 1H, NH); 7.33 (d, 2H, J = 8.0 Hz, ArH); 7.68 (d, 2H, J = 8.0 Hz, ArH); 12.78 (br s, 1H, NH).¹³C NMR (75.0 MHz, acetone-*d*₆): δ 178.2 (C=S), 162.1 (C=N), 143.4, 132.2, 128.7, 115.6 (Ar); 55.9 (CHN); 30.4 (CH_2CH_2SMe) ; 22.0, (CH_2CH_2SMe) ; 21.0 (Me-Ar), 20.7 (SMe). Anal. Calcd for $C_{13}H_{17}O_3N_3S_3$ (359.3467): C, 43.42; H, 4.77; N, 11.69. Found: C, 43.16; H, 4.85; N, 11.53.

4-Methyl-N-[1-(5-mercapto-1,3,4-oxadiazol-2-yl)-(**3i**). Yield: 2-methylbutane]benzenesulfonamide 0.43 g (85%), mp 171–173°C, $[\alpha]_{\rm D}^{20} = +43^{\circ}$ (*C* = 1.0, acetone). λ_{max} (MeOH): 265, 234 nm, IR (KBr) ν_{max} (cm⁻¹): 3309 (NH), 1593 (C=N), 1375, 1157 (SO₂). ¹H NMR (400 MHz, acetone- d_6): δ 0.82, 0.86 (m, 6H, CHMeCH₂Me); 1.63–1.66 (m, 2H, CHMe CH_2 Me); 2.37 (s, 3H, Ar- CH_3); 2.29 (m, 1H, $CHMeCH_2CH_3$); 4.33 (dd, 1H, J = 7.0 Hz, 9.0 Hz, NCH); 7.33 (d, 2H, J = 8.0 Hz, ArH); 7.66 (d, 2H, J = 8.0 Hz, ArH); 11.79 (br s, 1H, NH).¹³C NMR (63.2 MHz, CDCl₃): δ 178.2 (C=S); 162.4 (C=N); 144.7, 136.8, 131.0, 127.8 (Ar); 54.0 (CHN); 38.4 (*CH*MeCH₂Me); 25.0 (CHMe*CH*₂Me); 21.6 (*Me*-Ar); 15.5 (CHMeCH₂Me), 10.9 (CHMeCH₂Me). MS; m/z (EI) 341 (M⁺); $C_{14}H_{19}O_3N_3S_2$ (341.4553), HRMS: (341.4678).

4-Chloro-N-[1-(5-mercapto-1,3,4-oxadiazol-2-yl)-2-methylbutane]benzenesulfonamide (**3j**). Yield: 0.49 g (91%), mp 185–187°C, $[\alpha]_D^{20} = +30^\circ$ (C = 0.72, acetone). λ_{max} (MeOH): 279, 236 nm, IR (KBr) ν_{max} (cm⁻¹): 3295 (NH), 1599 (C=N), 1376, 1148 (SO₂). ¹H NMR (400 MHz, acetone- d_6): δ 0.88, 0.93 (m, 6H, CHMeCH₂Me); 1.79–1.86 (m, 2H, CHMeCH₂CH₃); 2.31 (m, 1H, CHMeCH₂CH₃); 4.38 (dd, 1H, J = 7.6 Hz, J = 9.1 Hz, NCH); 7.65 (d, 2H, J = 8.1 Hz, ArH); 7.81 (d, 2H, J = 8.1 Hz, ArH). ¹³C NMR (63.2 MHz, CDCl₃): δ 178.4 (C=S), 162.7 (C=N), 145.2, 136.8, 132.5, 128.4 (Ar); 55.2 (CHN), 38.5 (CHMeCH₂Me); 24.9 (CHMeCH₂Me); 15.6 15.5 (CHMeCH₂CH₃); 11.2 (CHMeCH₂Me). MS; *m*/*z* (EI) 361(M⁺); C₁₃H₁₆O₃N₃S₂Cl (361.8731), HRMS: (361.8620).

2-[1,5-Bis(4-methylphenylsulfonamido)]-pentyl-5-mercapto-1,3,4-oxadiazole (**3k**). Yield: 0.68 g (89%), mp 147–149°**C**. IR (KBr) ν_{max} (cm⁻¹): 3299 (NH), 1597 (C=N), 1321, 1161 (SO₂).¹H NMR (400 MHz, acetone-d₆): δ 1.37–1.48 (m, 4H, 2 × CH₂); 1.78 (m, 2H, CH₂); 2.37 (s, 3H, CH₃); 2.79 (m, 2H, CH₂); 4.38 (dd, 1H, *J* = 6.5 Hz, 9.0 Hz, NCH); 7.21 (br s, 1H, NH); 7.32 (m, 3H, ArH); 7.37 (d, 2H, *J* = 7.9 Hz, ArH); 7.65 (d, 2H, *J* = 8.0 Hz, ArH); 7.74 (d, 2H, *J* = 8.0 Hz, ArH); 12.85 (br s, 2H, NH, SH). Anal. Calcd for C₂₁H₂₆O₅N₄S₃: (510.66): C, 49.39; H, 5.13; N, 10.97. Found: C, 49.28; H, 5.13; N, 11.27.

2-[1,5-Bis(4-chlorophenylsulfonamido)]-pentyl-5-mercapto-1,3,4-oxadiazole (**3l**). Yield: 0.67 g (81%), mp 153–155°C. IR (KBr) ν_{max} (cm⁻¹): 3286 (NH), 2555 (SH), 1607 (C=N), 1327, 1165 (SO₂).¹H NMR (400 MHz, acetone- d_6): δ 1.39–1.53 (m, 4H, 2 × CH₂); 1.75 (m, 2H, CH₂); 2.79 (m, 2H, CH₂); 4.39 (dd, 1H, *J* = 6.5 Hz, 9.1 Hz, NCH); 7.21 (br s, 2H, NH); 7.52 (m, 3H, ArH); 7.57 (d, 2H, *J* = 7.9 Hz, ArH); 7.79 (d, 2H, *J* = 8.0 Hz, ArH); 7.82 (d, 2H, *J* = 8.0 Hz, ArH); 12.91 (br s 2H, NH, SH). Anal. Calcd for C₁₉H₂₀O₅N₄S₃Cl2 (551.48): C, 41.38; H, 3.66; N, 10.16. Found: C, 41.18; H, 3.69; N, 10.47.

4-Methyl-N-(1-(5-mercapto-1,3,4-oxadiazol-2-yl)phenyl)benzenesulfonamide (**3m**). Yield: 0.34 g (65%), mp 191–192°C. IR (KBr) ν_{max} (cm⁻¹): 3295 (NH), 2565 (SH), 1581 (C=N), 1281 (C=S), 1375,1141 (SO₂). ¹H NMR (acetone- d_6): δ 2.38 (s, 3H, CH3); 7.33 (d, 2H, ArH, J = 8.2 Hz); 7.41–7.64 (m, 4H, ArH); 7.78 (d, 2H, ArH, J = 8.0 Hz); 10.35 (br s, 1H, NH); 12.89 (br s, 1H, NH). Anal. Calcd for C₁₅H₁₃N₃O₃S₂ (347.41): C, 51.86; H, 3.77; N, 12.10. Found: C, 51.58; H, 3.68; N, 11.95. MS: *m*/z (EI) 347 (M⁺).

4-Chloro-N-(1-(5-mercapto-1,3,4-oxadiazol-2-yl)phenyl)benzenesulfonamide (**3n**). Yield: 69%, mp 210-211°C. IR (KBr) ν_{max} (cm⁻¹): 3316 (NH), 1562 (C=N), 1281 (C=S), 1361, 1155 (SO₂), 679 (C-S) cm⁻¹. ¹H NMR (acetone- d_6): δ 7.42-7.58 (m, 4H, ArH); 7.79 (d, 2H, ArH, J = 8.5 Hz); 7.89 (d, 2H, ArH, J = 8.4 Hz); 10.23 (br s, 1H, NH); 12.89 (br s, 1H, NH). Anal. Calcd for $C_{14}H_{10}ClN_3O_3S_2$ (367.83): C, 45.71; H, 2.74; N, 11.42. Found: C, 45.39; H, 2.67; N, 11.17. MS: m/z (FAB) 367/369 (M + H⁺).

General Procedure for Preparation of Alkylsulfanyl Derivatives (**4a–d**)

A solution of **3a–d** (0.75 mmol) in CHCl₃ (25 mL) containing Et₃N (0.30 mL), 0.22 mmol) and catalytic amount of DMAP [4-(N, N-dimethylamino)pyridine] (25 mg) was stirred at 23°C for 15 min. To this solution, p-nitrobenzyl bromide (0.17 g, 0.80 mmol) was added and the mixture was stirred for 5 h at 30–70°C. The reaction mixture was washed with dil. HCl, brine sol., water and the organic layer was dried (Na₂SO₄). The solvent was evaporated to dryness, and the residue was recrystallized from aq. EtOH to give the desired product.

N-(1-(5-(4-Nitrobenzylthio)-1,3,4-oxadiazol-2-yl)*methylpropyl)-4-methylbenzenesulfonamide* (4a). Yield: 0.29 g (85%), mp 123–125°C, $[\alpha]_{D}^{20} = +27^{\circ}$ (c = 0.57, acetone). IR (KBr) ν_{max} (cm⁻¹): 3286 (NH), 1612 (C=N), 1375, 1155 (SO₂) 697 (C-S). ¹H NMR (400 MHz, acetone- d_6): δ 8.27 (d, 2H, J = 8.0 Hz, ArH); 7.69 (d, 2H, J = 8.4 Hz, ArH), 7.56 (d, 2H, J = 8.4 Hz, ArH); 7.34 (d, 2H, J = 8.2 Hz, ArH); 7.28 (br s, 1H, NH); 4.30 (s, 2H, CH₂Ar); 4.27 (dd, 1H, J = 8.0 Hz, J = 9.2 Hz, NCH); 2.21–2.29 (m, 1H, *CH*Me₂); 2.41 (s, 3H, Ar-CH₃); 1.06, 0.94 (2 × d, 6H, J = 6.7 Hz, CHMe₂). Anal. Calcd. for C₂₀H₂₂N₄O₅S₂ (462.54): C, 51.93; H, 4.79; N, 12.11. Found: C, 51.69; H, 4.71; N, 11.92. MS: m/z (FAB) 485 (M + Na⁺).

N-(*1*-(*5*-(*4*-*Nitrobenzylthio*)-*1*, *3*, *4*-*oxadiazol*-2-*yl*)*methylpropyl*)-*4*-*chlorobenzenesulfonamide* (**4b**). Yield: 0.26 g (70%), mp 165–167°C, $[\alpha]_D^{20} = +20^\circ$ (*c* = 0.63, acetone). IR (KBr) ν_{max} (cm⁻¹): 3266 (NH), 1588 (C=N), 1375, 1173 (SO₂) 692 (C−S). ¹H NMR (400 MHz, acetone-*d*₆): δ 8.20 (d, 2H, *J* = 8.4 Hz, ArH); 7.89 (d, 2H, *J* = 8.0 Hz, ArH), 7.72 (d, 2H, *J* = 8.0 Hz, ArH); 7.58 (d, 2H, *J* = 7.8 Hz, ArH); 7.27 (br s, 1H, NH), 4.62 (dd, 1H, *J* = 7.2 Hz, *J* = 9.2 Hz, NCH); 4.46 (s, 2H, *CH*₂Ar), 1.97–2.03 (m, H, *CHM*e₂); 0.98, 0.91 (d, 3H, *J* = 6.8 Hz, CH*M*e₂). Anal. Calcd for C₁₉H₁₉ClN₄O₅S₂ (482.96): C, 47.25; H, 3.97; N, 11.60. Found: C, 47.01; H, 3.83; N, 11.24. MS: *m*/z (FAB) 504/506 (M + Na⁺).

N-(*1*-(5-(4-*Nitrobenzylthio*)-*1*,*3*,4-oxadiazol-2-yl)propyl)-4-methylbenzenesulfonamide (**4c**). Yield: 0.22 g (64%), mp 113–115°C, $[\alpha]_{D}^{20} = +31°$ (*c* = 0.76, acetone). IR (KBr) ν_{max} (cm⁻¹): 3295 (NH), 1585 (C=N), 1375, 1162 (SO₂), 679 (C–S).¹H NMR (400 MHz, acetone- d_6): δ 8.25 (d, 2H, J = 8.4 Hz, ArH); 7.78 (d, 2H, J = 8.2 Hz, ArH); 7.65 (d, 2H, J = 8.4 Hz, ArH); 7.33 (d, 2H, J = 8.1 Hz, ArH); 7.20 (br s, 1H, NH); 4.51 (dd, 1H, J = 7.0 Hz, J = 9.2 Hz, NCH); 4.42 (s, 2H, CH_2 Ar); 2.38 (s, 3H, Ar- CH_3); 1.75–1.80 (m, 2H, CH_2 CH₃); 0.87 (t, 3H, J = 7.4 Hz, CH_2CH_3). Anal. Calcd for C₁₉H₂₀N₄O₅S₂ (448.52): C, 50.88; H, 4.49; N, 12.49. Found: C, 50.69; H, 4.39; N, 12.18. MS m/z (FAB) 449 (M + H)⁺.

N-(*1*-(*5*-(*4*-*Nitrobenzylthio*)-*1*,*3*,*4*-*oxadiazol*-*2*-*yl*)*propyl*)-*4*-*chlorobenzenesulfonamide* (**4d**). Yield: 0.29 g (83%), mp 121–122°C, $[\alpha]_D^{20} = +22°$ (*c* = 0.63, acetone). IR (KBr) ν_{max} (cm⁻¹): 3286 (NH), 1597 (C=N), 1375, 1166 (SO₂), 679 (C−S). ¹H NMR (400 MHz, acetone-*d*₆): δ 8.17 (d, 2H, *J* = 8.0 Hz, ArH); 7.69 (d, 2H, *J* = 8.4 Hz, ArH); 7.57 (d, 2H, *J* = 8.4 Hz, ArH); 7.33 (d, 2H, *J* = 8.2 Hz, ArH); 7.22 (br s, 1H, NH); 4.64–4.72 (m, 1H, NCH); 4.36 (s, 2H, *CH*₂CH₃); 1.49 (d, 3H, *J* = 7.0 Hz, CH₂*CH*₃). Anal. Calcd for C₁₈H₁₇ClN₄O₅S₂ (468.93): C, 46.10; H, 3.65; N, 11.95. Found: C, 45.88; H, 3.49; N, 11.69. MS: *m*/*z* (FAB) 468/470 (M + H)⁺.

REFERENCES

- [1] (a) Larthed, M.; Hallberg, A. Drug Discovery Today 2001, 6, 406–416; (b) Sanntagada, V.; Perissutti, F.; Caliendo, G. Curr Med Chem 2002, 9, 1251–1284.
- [2] Dzierba, C. D.; Combs, A. P. Annu Rep. Med Chem 2002, 37, 247–256.
- [3] Mavandadi, F.; Lidström, P. Curr Top Med Chem 2004, 4, 773–792 and references therein.
- [4] Ashour, F. A.; Mazoroa, A.; Sara, A. J Pharm Sci 1990, 4, 29–31.
- [5] Mazouz, F.; Lebreton, L.; Milcent, R.; Burstein, C. Eur J Med Chem 1990, 25, 659–671.
- [6] Hutt, M. P.; Elslager, E. F.; Werbal, L. M. J Heterocycl Chem 1970, 7, 511–518.
- [7] El-Emam, A. A.; Al-Deeb, O. A.; Al-Omar, M.; Lehmann, J. Bioorg Med Chem Lett 2004, 12, 5107– 5113.
- [8] Ouyang, X.; Piantitski, E. L.; Pattaropong, V.; Chen, X.; H.-Y. He.; Kiselyov, A. S.; Velankar, A.; Kawakami, J.; Labelle, M.; Lohman, J.; Lee, S. P.; Malikzay, A.; Fleming, J.; Wang, Y.; Rosler, R. L.; Zhou, K.; Mitelman, S.; Camara, M.; Surguladze, D.; Doody, J. F.; Tuma, M. C. Bioorg Med Chem Lett 2006, 16, 1191–1196.
- [9] Masereel, B.; Rolin, S.; Abbate, F.; Scozzafava, A.; Supuran, C. T. J Med Chem 2002, 45, 312–320.
- [10] Clark, W. G.; Brater, D. C.; Johnson, A. R. In Medical Pharmacology, 13th ed.; Mosby Year Book: St. Louis, MO, 1992; pp 637.
- [11] Xia, G.; Li, J.; Peng, A.; Lai, S.; Zhang, S.; Shen, J.; Liu, Z.; Chen, X.; Ji, R. Bioorg Med Chem Lett 2005, 15, 2790–2794.

Microwave-Assisted Synthesis and Anti-HIV Activity of New Benzenesulfonamides Bearing 2,5-Disubstituted-1,3,4-oxadiazole Moiety 431

- [12] Neamati, N.; Mazumder, A.; Sunder, S.; Owen, J. M.; Schultz, R. J.; Pommier, Y. Antimicrob Agents Chemother 1997, 8, 485–495.
- [13] Louie, A. Y.; Meade, T. J Chem Rev 1999, 99, 2711– 2734.
- [14] Murphy, R. l.; Montaner, J. Exp Opin Invest Drugs 1996, 5, 1183–1199.
- [15] Romero, D. L.; Morge, R. A.; Biles, C.; Berrios-Pena, t. N.; May, P. D.; Palmer, J. P.; Johnson, P. M.; Smith, H. W.; Busso, M.; Tan, C.-K.; Voorman, R. L.; reusser, F.; Althaus, I. W.; Downey, K. M.; So, A. G.; Resnick, L.; Tarpley, W. G.; Aristoff, P. A. J Med Chem 1994, 37, 999–1014.
- [16] Young, S. D.; Britcher, S. F.; Tran, L. O.; Payne, L. S.; Lumma, W. C.; Lyle, T. A. Huff, J. R.; Anderson, P. S.; Olsen, D. B.; Carroll, S. S.; Pettibone, D. J.; Obrien, J. A.; Ball, S. K.; Balani, R. G.; Lin, J. H.; Chen, I. W.; Schlief, W. A.; Sardana, V. V.; Long, W. J.; Byrnes, V. W.; Emini, E. A. Antimicrob Agents Chemother 1995, 39, 2602–2605.
- [17] De Clerq, E. Pure Appl Chem 2001, 73, 55–66.

- [18] Ladva, J.; Patel, P.; Upadhyay, P.; Parekh, H. Ind J Chem 1996, 35B, 1062–1066.
- [19] Lai, J. Y. Q.; Ferguson, Y.; Jones, J. Synth Commun 2003, 33, 3427–3433.
- [20] Zareef, M.; Innocenti, A.; Iqbal, R.; Zaidi, J. H.; Arfan, M.; Scozzafava, A.; Supuran, C. T. J Enzym Inhib Med Chem 2006, 21, 351–359.
- [21] Al-Soud, Y. A.; Al-Masoudi, N. A. J Brazil Chem Soc 2003, 14, 790–796.
- [22] Zareef, M.; Iqbal, R.; Al-Masoudi, N. A.; Zaidi, J. H.; Arfan, M.; Shahzad, S. A. J. Phosphorus, Sulfur, Silicon Relat Elem (in press).
- [23] Fujiwara, T.; Sato, A.; El-Farrash, M.; Miki, S.; Kabe, K.; Isaka, Y.; Kodama, M.; Wu, Y.; Chen, L. B.; Harada, H.; Sugimoto, H.; Hatanaka, M.; Hinuma, Y. Antimicrob Agents Chemother 1998, 42, 1340– 1345.
- [24] Root, M. J.; Steger, H. K. Curr Pharm Design 2004, 10, 1805–1825.
- [25] Ni, L.; Gao, G. F.; Tien, P. Biochem Biophys Res Commun 2005, 332, 831–836.